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Abstract

We present a technique to conduct the density functional analysis of a liquid crystal system under the constraints of

two parallel walls. The key feature of our approach is the way to perform multidimensional integrals in which certain

regimes of the arguments are forbidden due to the effect of the wall excluded volume. This effect occurs in the surface

potentials that contain orientationally dependent hard cores. The proposed calculations are based on the exact

Gaussian quadratures and application of the modified limits of integration. They are quick and efficient and give

reasonable orientation-density distribution functions for a relatively small number of the integration grid points.

Another benefit of the proposed method is the fact that neither polynomial expansions nor interpolations of the integral

elements is needed and the resulting solution for the distribution functions is only endowed by the error of the second

virial approximation. Application of this algorithm can be extended to soft interactions by using the hard core cutoff of

the soft potentials as the limits of integration.

� 2003 Elsevier B.V. All rights reserved.

PACS: 02.70.)c; 61.30.Pq
1. Introduction

If a molecular system is limited by a substrate the translational symmetry of the particles� density dis-

tribution is broken: the particles cannot go beyond the introduced wall. Their extreme positions at this side

are dictated by the distance of the closest approach that comes from the assumed wall–particle interaction.

With the increasing pressure of the fluid the nearest to the wall molecules tend to form a two-dimensional

layer, which manifests itself as a peak in the density distribution plotted versus the direction perpendicular
to the substrate. With a further increase of the pressure this layer can attain a liquid-like structure [1–5].

New subsequent layers can be also formed and, finally, a solid state is obtained [6]. Properties of such layers

in dependence on the thermodynamical parameters like the pressure, the temperature or the density are

known as adsorption phenomena [1–6]. If two confining walls come into question growth of the wetting
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layers can be proceeded by the spinodal phase transition that is associated to spontaneous condensation

and formation of a liquid-like state of condensed fluid. The thermodynamical parameters at which such

transition occurs are usually shifted in reference to the corresponding parameters that characterise a similar

transition of the bulk fluid. The whole phenomena bears the name of the capillary effect [5–7]. Occurrence

of the above aspects of confinement, the capillary effect and the pure adsorption, depends on the size of the

pores in which the substance is immersed.

An interest in confined fluids based on the spherical interactions has been extended into the case, where

interactions are anisotropic. The main motivation of such extension was the fact that hardly any physical
system exhibits truly spherical molecular symmetry. Even nitrogen, which is commonly regarded as a

perfect example of the spherically symmetric interactions, when confined in a graphite slit, it can undergo in

an adsorbed monolayer the incommensurate–commensurate structural transition, which cannot be ex-

plained on the basis of only isotropic models [5].

Main features of the confined isotropic fluids as oscillating density profiles, growth of the wetting films

or capillary condensation have been expected to find their counterparts in liquid crystals. One can also

expect additional effects due to the long-range order that is present in liquid crystal phases. By means of

computer simulations and the density functional (df) theory approaches they have already been discovered
in nematogenic systems: a wall peak in the density distribution, the surface uniaxial–biaxial (UB) phase

transition, the capillary nematisation and the growth of the wetting biaxial layer. The reports about these

basic phenomena do not, however, encompass systematical studies on the adsorption isotherms at different

particle–particle and particle–wall interactions, or on the multilayer structures which may occur at higher

pressures. This requires much more work from the side of computer simulations as from the side of the df

theory models.

The role and importance of the density functional approach in confined geometries can be best seen for

the isotropic fluids. Large literature on this subject exists as well for the systems composed from the hard
core interacting bodies as from the soft van der Walls particles [8]. It gives evidence that success of the df

theory lies in their predictive power. For example, in 1977 the density functional theory of Ebner et al.

[1,2] as the first predicted pre-wetting phenomena of the surface phase transition and the growth of thick

films. Because these phenomena are strongly dependent on the thermodynamical parameters close to

coexistence and because, probably, of an inaccurate knowledge of the coexistence curve of the bulk fluid

in the early 80s, these conclusions were firstly denied as incorrect. Appropriate choice of the mentioned

parameters allowed, however, to corroborate Ebner�s predictions by the Monte Carlo simulations [4] and,

later, by the non-local density functional theory [3] even up to the agreement of the density profiles.
By now, the non-local df theory approach is a well-established tool to study the confined systems�
properties [5].

The first works of non-phenomenological character on the confined liquid crystals, by Poniewierski and

Holyst [9] and by Poniewierski [10], have also benefited from the density functional approach. They

concern a fluid of hard rods in contact with a hard wall, in which the distribution functions are assumed

uniaxial. Although the biaxiality has been neglected the Poniewierski df theory correctly predicts negative

values of the uniaxial order parameter in the surficial area [11,12]. This fact was also the reason to check

the possibility of the biaxial phase formation. Using bifurcation analysis Poniewierski [10] has showed that
the uniaxial surface layer becomes unstable with respect to the formation of the biaxial phase at a bulk

density 15% below the bulk isotropic–uniaxial nematic transition. Subsequent papers confirm that the

biaxial surface order of hard elongated particles is a rule [12–16]. Simulating a system of hard rods by the

Monte Carlo method Dijkstra and coworkers [14–16] have showed that in small slits the isotropic fluid

undergoes a first order capillary nematisation transition which ends in a capillary critical point at the wall

separations smaller than about twice the length of the spherocylinders. They observed only one density

peak. Evidence on the multilayer formation in the hard Gaussian overlap (HGO) system of hard ellipsoids

has been found both by the Monte Carlo simulations and the df theory in [12]. Using a special type of
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scaling as proposed by Allen et al. [17], the authors of [12] have obtained the theoretical profiles of the

order parameters in an astonishingly good agreement with the simulation results. What is more important,

they showed in the df theory approach the possibility of the eigenvalue exchange phenomenon, which is

responsible for the switch of the dominant symmetry axis. In the studied case of two identical walls this

eigenvalue exchange takes place with respect to the number density. What is the main symmetry axis at

low densities (the normal to the substrate Z axis), at higher densities becomes of the secondary meaning at

the cost of the X axis, which now becomes principal. A similar to the above abrupt change of the sym-

metry axis, but at the same density, has been reported by Rodriguez-Ponce et al. [18] for a nematic in a
pore under hybrid anchoring conditions. Here, however, the authors blame the Frank elastic energy of the

director distortion for the resulting orientational profiles. Whereas it has been already acknowledged that

variations of the order contribute to the elastic energy [19–21] (this effect has been omitted in discussion of

the paper [18]), it is not clear at all whether the Frank director distortion energy can be used for the cases

with discontinuous changes of the symmetry axis, once it has been established on the assumption of small

changes of the continuously changing director [22]. In [16] Dijkstra et al. have also proposed a modifi-

cation of the Monte Carlo simulation method for the particles in contact only with a single wall. This

method allows to eliminate possible capillary effects and, as such, it is especially suitable for the studies of
adsorption and wetting phenomena. The authors of [16] have applied their method to a system of hard

spherocylinders of a length-to-diameter ratio of 15 and, as the firsts, showed the growth of the surface

biaxial nematic in contact with the bulk isotropic phase. As they admit, however, their results are sufficient

to give an answer neither on the complete wetting problem nor on the nature of the UB transition. An

interesting outcome is that a simplified df theory Zwanzig model [14–16], in which the orientations of the

particles are restricted only to three orthogonal directions, is capable to predict the key features of the

capillary nematisation transition.

Different anchoring conditions attract special attention. Because of the technological relevance
this field seems to be the mostly investigated on [23–36]. An illustrative example of the interplay of

anchoring conditions, sample dimensions and microscopic organisation is given, for instance, in [34]. In

this paper Gruhn et al. have presented snapshots of a nematic phase in the presence of the walls that

favour homeotropic alignment. The authors show variations of the microscopic structure which depend

on the wall separation distance and which are correlated with the normal component of the stress

tensor.

Although the knowledge about confined nematics is quite substantial by now, much more work is

necessary to learn about the effects arising from the particular interactions and anchoring conditions. The
progress of theoretical studies on the coexistence, orientational wetting phenomena or phase transitions in

the liquid crystals remaining in contact with a substrate depends mainly on the accuracy of the multidi-

mensional integrations, which are inherent to the df theory self-consistency equations. The purpose of this

work is to present the way to calculate these integrals in a manner as efficient as possible and, in the spirit of

the Numerical Recipes [37], the only exact one.

The structure of the paper is as follows. In Section 2 we introduce basic concepts of the density func-

tional theory. The polynomial expansion way of solving the self-consistency equations is given in Section 3.

This section is given as a reference and review of the traditional method and addressed to the young re-
searchers not acquainted with the details of the df theory. It presents also what difficulties can be expected

in the case of inhomogeneous materials while using the traditional method. Extension of the Gaussian

quadratures (GQ) idea for the case with adjusted angular limits is given in Section 4. Section 5 presents

examples of the orientation and the density profiles obtained at different numbers of the grid points. How to

apply the method to the df theories based on the Lennard–Jones type potentials (soft interactions with the

orientation dependent steric cores) is shortly discussed in Section 6. Section 7 indicates a specifique case for

which the performance of the Gaussian quadratures is lower than desired and, finally, in Section 8 we

conclude by summarising the main idea and its possible applications.
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2. Theory

We consider a system composed of anisotropic uniaxial particles confined between two structureless

walls which are separated by the distance L. The state of each particle is described by its position r and its

orientation vector a. For the purpose of this work we will use as an example a simplified system in which the

particles can interact only due to hard core interactions, as well among themselves as with the confining

walls. This condition means that when a given particle overlaps with another particle or one of the walls,

the interaction potential is assumed as infinite. Otherwise it is assumed as zero. This type of interaction
leaves the shape of the molecules as the most important factor. In particular, the particle–particle inter-

action is characterised by the function of the closest approach of two bodies rðr12=jr12j; a1; a2Þ

U12ðr12; a1; a2Þ ¼
0 if jr12jP rð r12

jr12j
; a1; a2Þ;

1 if jr12j < rð r12
jr12j

; a1; a2Þ

�
ð1Þ

and the wall–particle interaction, similarly, is characterised by the closest distance at which a particle re-

mains in contact with the wall rwallðaÞ

Uwallðr?; aÞ ¼
0 if jr?jP rwallðaÞ;
1 if jr?j < rwallðaÞ:

�
ð2Þ

In above, r12 is the vector connecting the centres of two particles and r? is the perpendicular to the wall

vector that separates the particle centre from the substrate. The orientation a is described in terms of the

polar and azimuthal angles a ¼ ðh;/Þ.
Leaving a discussion on details of the shape functions r and rwall for later we can proceed our con-

siderations with the functional of the free energy. Its general form reads [38,39]

bF ¼
Z

qða; rÞ½log qða; rÞ � 1� da dr� 1

2

Z
f12ð1; 2Þqð1Þqð2Þ dð1Þ dð2Þ

þ b
Z

Uwallðz1; a1Þqð1Þ dð1Þ: ð3Þ

This form is given in the secondvirial approximation,which takes into account only the interaction terms up to

the square order in the number density (note thatqða; rÞ is proportional to the density). Such anapproximation

is the necessity, since only for two particles an assessment of the interaction kernel is feasible. In (3) we use the

abbreviations ð1Þ � ða1; r1Þ, dð1Þ � da1dr1 and f12 ¼ expð�bU12Þ � 1 denotes the Mayer function; b stands

for 1=kT with k denoting theBoltzmann constant andT denoting the thermodynamic temperature;Uwallðz1; a1Þ
represents an external potential, in our case originating from the presence of the walls.

The functional dependence of Eq. (3) rests upon the distribution function qða; rÞ, which is defined as the
probability to find a particle with the orientation a at the position r multiplied by the total number of the

particles in the system in such a way that the normalisation condition holds:
R
qða; rÞ dð1Þ ¼ N . For a

confined liquid crystal fluid this function is inhomogeneous with respect to the both arguments, the position

and the orientation. It is not necessary to mention that these two types of inhomogeneities are, in general,

coupled.

The condition for the equilibrium state is given then by the minimum of the grand canonical potential

FGrand ¼ F� l
R
qð1Þ dð1Þ:

dFGrand

dq
¼ 0; ð4Þ

where l stands for the chemical potential. The condition (4) is, of course, mathematically equivalent to the

conditional minimum of F, where the imposed condition is the normalisation
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dFLagr

dq
¼ 0 ð5Þ

and FLagr ¼ F� lð
R
qð1Þ dð1Þ � NÞ. Thus, the chemical potential l can be also interpreted as the La-

grangian multiplier.

While solving the condition (4) it is useful to introduce a new effective function which will be the fac-

tually searched for. For this purpose we chose the reference system in such a way that the Z axis is along the

direction perpendicular to the walls. As long as we are interested only in nematic phases, the directions X
and Y are equivalent to each other, and, since in fact our problem is one-dimensional, irrelevant.

As our working function we chose the probability

f ða; zÞ ¼ qða; rÞ
Ld

; ð6Þ

where d is the global density of the system d ¼ N=V and V is the volume. Integration concerns the whole XY
cross-section areas of the liquid crystal sample. Since, due to the chosen geometry of the sample, these

cross-sections are independent on z coordinate, we can use for them only one symbol, namely Sxy . Its value

is of no importance, however its usage has helped us in manipulating the free energy functional. Nor-

malisation of the function f given by the formula (6) agrees now with the strict condition for the proba-
bility, i.e., the integral of f over the whole available argument space equals to unityZ 2p

0

Z p

0

Z L

0

f ðh;u; zÞ dz sin h dh du ¼ 1: ð7Þ

With the help of the formula (6) we can now substitute the function q with the function f in the free energy

bF ¼
Z

fdLðlog fdL� 1þ bUwallðz1; a1ÞÞ dð1Þ �
1

2

Z
f12ð1; 2Þf1dLf2dL dð1Þ dð2Þ: ð8Þ

After integration over the variables x and y one obtains

bF ¼ dLSxy

Z
f ðlog f þ log Ld � 1þ bUwallðz; aÞÞ dz da

þ 1

2
ðdLÞ2Sxy

Z
Sexclða1; z1; a2; z2Þf1f2 dz1 da1 dz2 da2; ð9Þ

where the double XY space integration of the Mayer function resulted in the area Sxy and a new function

Sexclða1; z1; a2; z2ÞZ
f12ð1; 2Þ dx1 dy1 dx2 dy2 ¼ SxySexclða1; z1; a2; z2Þ: ð10Þ

This new function is a two-dimensional counterpart of the excluded volume (henceforth called by the

excluded slice). One can picture it as an appropriate cross-section of the excluded volume body (see Fig. 1),

which should be reproduced if we add up all the slices togetherZ
Sexclða1; z1; a2; z2Þ dz1 dz2 ¼ LVexclða1; a2Þ: ð11Þ

In above Vexcl denotes the excluded volume. The standard definition of Vexcl represents it as the set of points
in space that are not accessible by the centre of the particle, say j, whose fixed orientation is given by aj in

the presence of another particle, say i, also with the fixed orientation ai. In practice, one can imagine the

excluded volume as moving the particle j all around the particle i always in contact with one another and



Fig. 1. An example of the excluded volume and the excluded slices. The excluded volume is obtained by moving the particle j around
the particle i under the fixed orientations� condition. The subsequent positions of the particle j are drawn in a thin solid line, the particle

i is drawn with a thick solid line in the middle of the picture and the excluded volume is given by the shadowed area. The excluded slices

are the white ellipsoidal cross-sections and are presented for three different zj positions of the particle j centre. Each slice is para-

metrised by the value of jzi � zjj.
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with the fixed orientations. By analogy, one can imagine the excluded slice by moving the particle j all

around the particle i but only within the plane XY , i.e., under the condition of fixed positions zj and zi. By
the symmetry reasons Sexcl will depend effectively on jzi � zjj. These symmetry arguments by no means hold

in general. This can be seen, for example, close to the walls. The situations generated by the sets of two

particles, fðai; ziÞ; ðaj; zjÞg and fðai; z0iÞ; ðaj; z0jÞg subject to the condition jzi � zjj ¼ jz0i � z0jj, are not equiva-

lent. It is important then to realise that this fact is caused purely by the wall interactions and not by the

nature of the excluded slice.

Finally one deals with the expression for the energy per particle

bF
N

¼
Z

f ðlog f þ log Ld � 1þ bUwallðz; aÞÞ dz daþ
1

2
Ld

Z
Sexclða1; z1; a2; z2Þf1f2 dz1 da1 dz2 da2

ð12Þ

and with the condition of the energy minimum dF=df ¼ Nl that takes the following form of the self-

consistency integral equations:

dL
Z L

0

Z p

0

Z 2p

0

Sexclða1; z1; a2; z2Þf2ða2; z2Þ dz2 da2 ¼ l� log Ld � log f ða1; z1Þ � bUwallðz1; a1Þ: ð13Þ

This is the main equation of the df theory of inhomogeneous liquid crystals considered here.
3. On solving integral equations in a polynomial expansion approach

In this section we recall the basic way of solving the self-consistency equations in a polynomial expansion

approach for the spatially homogeneous liquid crystal. This is a standard and well-known technique, which

is put here for the benefit of the beginners in the df theories and, also, as a reference for the inhomogeneous

case. In homogeneous case the self-consistency equations are quite similar to Eq. (13)
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log f ða1Þ þ d
Z p

0

Z 2p

0

Vexclða1; a2Þf2ða2Þda2 ¼ l� log d: ð14Þ

As already suggested by the name itself, the main idea of the polynomial expansion approach is to

expand the equation components, the logarithm of the distribution f and the interaction kernel Vexcl, in
terms of the symmetry adapted functions. For nematics composed of uniaxial particles these functions can

be either the spherical harmonics Y l
m or the Mulder functions Dl

mn [40], where the index n has been put to

zero: n ¼ 0. The uniaxial symmetry imposes that the integers l and m should be even numbers. In the case

of the complex Y functions m is limited to the values jmj6 l and in the case of Ds to 06m6 l. Both
descriptions, in Y and in D functions, should be equivalent. This entails another condition for the spherical

harmonics, namely that the functions Y l
m and Y l

�m will share the same coefficient in expansions. For

practical reasons the Mulder functions can be more preferred to the harmonics. Firstly, because, by

definition, they are real and, secondly, because expressions for the order parameters make use of the D
forms. As the third argument one can add the fact that the Mulder functions can be used also for the cases

with molecular biaxiality. A general recipe how to obtain Ds is based on the standard Wigner functions

Dl
mn [40]

Dl
m;nðXÞ ¼

1

2

ffiffiffi
2

p� �2þdm;0þdn;0 X
r;r0¼f�1;1g

Dl
rm;r0nðXÞ; ð15Þ

where X represents the Euler angles X � ðh;/;wÞ. In what we present next, we give an example based on the
Mulder functions. Since in the present problem the molecular biaxiality represented by the w dependence is

not taken into account, for brevity we will skip writing the index 0: Dl
m;n � Dl

m and we will systematically

omit the factor 2p associated to the w variable from the formulas. Also, instead of X we will use again the

orientation a, which is ascribed only to two relevant Euler angles, h and /.
The needed expansions follow:

Vexcl ¼
X
l;m

2lþ 1

4p
VlmD

l
mð~aaÞ ð16Þ

and

log f ða1Þ ¼
X
l;m

2lþ 1

4p
clmD

l
mða1Þ; ð17Þ

where ~aa is the relative angle between the particles with orientations a1 and a2, ~aa ¼ a�1
1 a2. Coefficients Vlm

should be evaluated on the basis of the assumed interaction model before starting the iteration procedure.

The unknowns to be found are the distribution coefficients clm. For a nematic, which in the most general

case is biaxial, the number of independent coefficients clm is given by the biaxial symmetry rules, which say

that l and jmj should be even and positive numbers such that jmj6 l.
Equations for the separate clm can be extracted from Eq. (13) by multiplying it with subsequent D

functions and, then, by using of the orthogonality rules

4p
2lþ 1

dl;l0dm;m0 ¼
Z

Dl
mðaÞDl0

m0 ðaÞ da ð18Þ

and the formulaZ
Vexclð~aaÞDl

mða2Þ da2 ¼
X

Vl0D
l
mða1Þ: ð19Þ
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In the above we have used the propertyZ
Dl

mð~aaÞDl0

m0 ða2Þ da2 ¼
4p

2lþ 1
dl;l0dm0D

l
m0 ða1Þ: ð20Þ

As a result one obtains a set of ðLmax þ 2ÞðLmax þ 4Þ=4 integral equations for the coefficients clm, where Lmax

is the maximum order, which is taken into account in the excluded volume expansion (Eq. 16)

clm þ dVl0

Z
Dl

m exp
X
l;m

2lþ 1

4p
clmD

l
mða1Þ

" #
da1 ¼ 0: ð21Þ

For a given particles� number N and volume V the chemical potential l in equilibrium is constant
throughout the sample. As such, it can be obtained from

l ¼ c00 þ log d þ d
4p

V00: ð22Þ

In order to apply the polynomial expansion approach into the case of inhomogeneous liquid crystals let

us invert Eq. (13) as

f ðz1; a1Þ ¼ exp

�
� d

Z L

0

Z p

0

Z 2p

0

Sexclðz1; a1; z2; a2Þf2ðz2; a2Þ dz2 da2 þ l� log Ld � Uwallðz1; a1Þ
�
:

ð23Þ

It is immediately seen from Eq. (23) that for infinite wall potentials, which is the case for certain ori-

entations corresponding to the hard core limit of the potential, the distribution function disappears. In this

case, the usage of the polynomial expansion approach becomes more complicated. As the first let us discuss

a simpler case of the surface potentials without any hard core. An example of such potential one can find in

[41]. It reads:

Uwallðz; aÞ ¼ �ð1� ða � dÞ2Þ; jz� zwallj < A=2;
0; otherwise;

�
ð24Þ

where a is the particle orientation, d is the wall ordering direction and � is the field strength. A denotes the

length of the particle�s symmetry axis. This form of the potential assumes the whole angular boundaries,

i.e., ð0–pÞ for the polar angle and ð0–2pÞ for the azimuthal angle.

The general structure of polynomial expansions in the inhomogeneous case is not affected by the type of

the wall potential and it yields

Sexclðz1; a1; z2; a2Þ ¼
X
l;m

slmðz1; z2ÞDl
mða1; a2Þ ð25Þ

and

log f ðz1; a1Þ ¼
X
l;m

clmðz1ÞDl
mða1Þ: ð26Þ

The unknowns to be solved for are now the functions clmðz1Þ. Evaluation of them can be done only on a

discrete grid and the solution of the self-consistency equations also involves the necessity to integrate over

the z variable. For this purpose traditionally an equispaced grid and trapezoidal rule have been used [41].
For the surface potentials without hard cores the technique of solving the self-consistency equations is very

similar as for the above discussed homogeneous case. Notice only that the chemical potential l, which is
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constant throughout the sample for a given particles� number N and volume V , now can be re-addressed as

constant in respect to more suitable for the confined geometry parameters (fully equivalent to V and N ): the

number density d and the wall separation distance L. If the set of algebraic equations for the coefficients clm
is too large and too awkward to handle, it can alternatively be used a numerical minimisation of the grand

potential with respect to clm.
When the surface potential contains a hard core contribution that restricts rotations of the molecules at

the walls the situation becomes much different. It can be illustrated, for instance, by the infinite potential

from Eq. (2) and the closest approach rwallðaÞ as

rwallðaÞ � zwall ¼
A
2
cos h: ð27Þ

The first observation now is that the orthogonality rules do not hold in the surface areas. Instead of
(18) we obtain a chain of integrals which, nevertheless, knowing the restricting conditions, can be

calculated. Whereas for full angular intervals the term of a given order, say l ¼ 2, decouples from

the terms of higher orders, in the case of restricted orientations one can deal with non-zero integrals

like

A4;2ðzÞ ¼
Z p�HmaxðzÞ

HmaxðzÞ
D4

0D
2
0 sin h dh d/: ð28Þ

Knowing the penalty function HmaxðzÞ all functions of the above sort can be calculated and stored for the

future usage. From the condition (27) it follows, for example, that HmaxðzÞ ¼ arccosð2z=AÞ. Similar situ-

ation occurs in analyzing Eqs. (19) and (20).
As for the changes that occur in the way of solving the self-consistency equation (13), it follows. The

expansions (25) and (26) are still valid, but extraction of the coefficients clmðziÞ, where zi denotes ith
point of the Z grid, gets really very complicated. For instance, new contributions appear in the integrals

like Z p�HmaxðziÞ

HmaxðziÞ
log fD2

0 sin h dh d/ ¼ A2;0ðziÞc00ðziÞ þ A2;2ðziÞc20ðziÞ þ A2;4ðziÞc40ðziÞ � � � ; ð29Þ

where the numbers Al;l0 are like in (28) which, once calculated, can be regarded as known. Although our set

of algebraic equations obtains many new terms, one can still have the same number of independent
equations as unknowns, hence the problem is solvable. The main difficulty is a big number of unknowns,

which increases with the expansion order of the interaction kernel. This can be the reason why in practice

the polynomial expansion approach (and its different implementations) for inhomogeneous media is limited

to small order in Y l
m [42] or even to the second order [41].

The method presented in next sections does not use any polynomial expansions and, moreover, includes

the whole influence of the interaction kernel.
4. Gaussian integration with the adjusted angular limits

Since the problem under consideration is inhomogeneous as well in the spatial as in the orientational

space, one has to take into account a description in which the functions are represented by their values on

an appropriate grid. Most commonly used here is the idea of the fixed and equispaced grids [41,42]. This is

imposed by the structure of the self-consistency equations and the computers efficiency, if one wants to find

equations solution in an iterative manner. In most cases the interaction kernel Sexcl from the formula (13) is
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not given by any analytical form and its necessary values should be stored in matrices. On an equispaced

grid it is sufficient to store and use the values only for the intervals in the relative variable zi � z2 (not for the
individual points zi). The gain is substantial. Equispaced grids, however, entail the necessity to use standard

but numerically the less accurate ways to calculate integrals, that are directly based on the Riemann integral

definition
R
f dx ¼

P
x f ðxÞDx.

The integral to be calculated in Eq. (13) is three-dimensional. If we used an equispaced method equally in

all three dimensions (without polynomial expansions) then, assuming crude grids of 50 intervals for each

argument, h;/ and z, we need 50� 50� 50 ¼ 125,000 evaluations of a single integrand, which, together
with the normalisation conditions, makes 250,000 elements per one iteration. This requirement is certainly

prohibitive for ordinary computers. What is worse, at different distances close to the wall it can be left

effectively 30, 10 or 6 points for evaluations. Can one trust the assessment of an integral, which is based on a

few points chosen from the equispaced set? Non-equispaced grid and the exact methods of the Gaussian

quadratures offer another possibility.

At first glance, the Gaussian quadratures seem to be forgotten in the case of inhomogeneous liquid

crystals. The reason for their rejection is straightforward. One cannot omit then even a single point and this

is what happens, when the particles approach the wall: some of the space points that depend on the particles
orientations are forbidden. It might seem, then, that we are condemned to use the equispaced grids but this

impression is false.

An extensive description on this subject one can find, for example, in Numerical Recipes [37] and in

references therein.

As an exact method for the multidimensional integrals Numerical Recipes [37] advises the procedure

quad3d, which is based on sequential calling of the one-dimensional Gaussian quadrature. This procedure,

quad3d, is written in the form that contains calls to the user-supplied integrand and the boundaries

functions. Straight application of it to the confined liquid crystals is problematic for a few reasons. Firstly,
not all of the integrand components can be analytically given. One of them, moreover, the distribution

function, is our unknown. Also the excluded slices themselves may come from other methods like the

Monte Carlo assessments. Secondly, the procedure spends substantial amount of time sweeping the areas

where the integrand is zero. The third notice is that the needed order of the Gaussian quadrature for Z
integrations can be much larger than for the angular integrations. quad3d also calculates the same abscissas

for many times. These shortcomings, however, do not ban the idea itself and can be easily removed. To see

that the idea of GQ works, one should only go back to the fact that the Gaussian quadratures are based, in

fact, on discrete values.
In order to apply GQ to the nematic in a slab geometry let us start from the construction of all the

needed Gaussian abscissas. In the z coordinate the number of the Gaussian points will be given as NGZ and

the abscissas are fixed in space. The borders of integrations are given by a ¼ 0 and b ¼ L. Gaussian points

are generated then by the standard recipe:

xm ¼ 0:5ðb� aÞ
xr ¼ 0:5ðbþ aÞ
forði ¼ 1; i <¼ NGZ2; iþþÞ
f
z½i� ¼ xm� xr � x½i�;
z½NGZ2þ i� ¼ xmþ xr � x½i�;
wz½i� ¼ w½i�;
wz½NGZ2þ i� ¼ w½i�;
g

ð30Þ
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where NGZ2 ¼ NGZ=2 and x½i� are the points from the interval ð0; 1Þ corresponding to the roots of the NGZ
Legendre polynomial [37]. Additionally in (30) we have included the weights wz½i�. Note that the recipe

makes use of the fact that the Gaussian points are placed symmetrically with respect to the middle point of

the interval.

Integrations over the angle / in Eq. (13) are independent from z and h and can be calculated using

standard Gaussian procedure of a new order of the quadrature, say, NG.
As concerns integration in h the situation, as already discussed, gets complicated. Not all the values

from the interval ð0; pÞ can be available. This availability depends on the distance from the wall. A con-
struction of the Gaussian points in the polar angle in the vicinity of the substrate is presented in Fig. 2,

where the wall interaction considered is just of a hard wall. One can see that the set of the Gaussian

abscissas in the polar angle domain is parametrised by izth point on the axis Z. Effectively, one has the set
of the h angle points

xmt½iz� ¼ 0:5 � ðbt½iz� þ at½iz�Þ;
xrt½iz� ¼ 0:5 � ðbt½iz� � at½iz�Þ;
forði ¼ 1; i <¼ NG2; iþþÞ
f
xt½i�½iz� ¼ xmt½iz� � xrt½iz� � xt½i�;
xt½NG2þ i�½iz� ¼ xmt½iz� þ xrt½iz� � xt½i�;
g
wt½i� ¼ wwt½i�;
wt½MDIVT þ i� ¼ wwt½i�;

ð31Þ

For the limits at½iz� and bt½iz� the hard wall condition imposes the values

at½iz� ¼ Hmax; ð32Þ
bt½iz� ¼ p�Hmax: ð33Þ

Using the above information we can write now a code which gives the value of the three-dimensional

integral from Eq. (13). It consists from three loops accordingly to three types of variables. Note the

importance of the order of the loops, namely that the loop for the Z integration is the most outer

loop!
Fig. 2. Representation of the angular and the spatial Gaussian points.
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sumaz ¼ 0:0;

forðz2 ¼ 1; z2 <¼ NGZ; z2þþÞ
f
fz12 ¼ fabsðz½z1� � z½z2�Þ;
if ðfz12 <¼ 2 � AÞ
f
suma ¼ 0:0;

forðk ¼ 1; k <¼ NG; k þþÞ
fforðh ¼ 1; h <¼ NG; hþþÞ
f
help ¼ Sliceði; j; z1; k; h; z2Þ;
sumaþ ¼ wt½k� � wf ½h� � fodf ½k�½h�½z2� � help;
ggg
sumazþ ¼ wz½z2� � suma � xrf � xrt½k�;
g
sumaz� ¼ xrz;

ð34Þ

In the structure of the integration procedure like in (34) it is now very easy to introduce a penalty condition

to eliminate the cases where the excluded slice function is zero. The most crude condition follows the fact
that the relative distance between the point belonging to the particle ‘‘1’’ and the point from another

particle ‘‘2’’ fz12 ¼ fabsðz½z1� � z½z2�Þ is larger from the longest particle cross-section. For ellipsoids the

longest cross-sections coincide with the longest principal axis (in this paper denoted by the symbol A) times

2. So the inner loops in (34) are considered only if the condition fz12 <¼ 2 � A is fulfilled.
5. Orientational and density profiles for a confined nematic

In this section we present the density functional theory results for the HGO system with respect to

different integration parameters. General features of this system have already been introduced in [12] and

the details on the excluded areas one can find in [43].

Our example considers the system of ellipsoidal HGO particles at the density q ¼ 0:292. The long axis of

the molecule is A ¼ 2:5 and the short is given by B ¼ 0:5, hence the aspect ratio equals to 5. The wall

separation is four times the length of the particles. Throughout the graphic presentations we undertake the

rule to present different results with respect to the fixed number of iterations, NITER ¼ 500.

At the chosen density the system is in a well-ordered nematic phase. The director points towards the X
axis which is established accordingly to the largest eigenvalue of the order parameter tensor Q. A complete

set of Q values is given in Fig. 3(a). Analysis of their behavior [12] shows the uniaxial order in the bulk area

and the biaxial order at the walls. Figs. 3(b)–(d) present details of the eigenvalues Qxx, Qyy and Qzz profiles

obtained for the largest grid in Z, NGZ ¼ 88, and two different NG sets used for the angular integration.

There is a substantial improvement after the increase of the NG Gaussian points from 10 to 16 ranging up

to the difference (absolute) of 0.015.

In Fig. 4 we present the density profiles. For the angular integration we use two sets of the Gaussian

points, NG ¼ 10 and NG ¼ 16. More attention is paid to space integration. Here we check the results for the
Gaussian sets with the number of points NGZ, 32, 44, 64, 88, respectively.



Fig. 3. (a) Three eigenvalues of the tensorQ calculated on a grid containing NG ¼ 16 and NGZ ¼ 88 points. The figures (b)–(d) present

comparison between the profiles ofQxx,Qyy andQzz eigenvalues obtainedwithNGZ ¼ 88 but at different number of Gaussian points in the

angular integration, NG ¼ 10 and NG ¼ 16. To show details the scale of presentations in (b)–(d) as compared to (a) has been magnified.

Fig. 4. The density profiles obtained after 500 iterations for different numbers of the grid points. NG denotes the number of the

Gaussian points used in the angular integrals. (a) and (b) are for NG ¼ 10 and (c) and (d) for NG ¼ 16. Subsequent curves in

the pictures correspond to Z grid of NGZ ¼ 32, NGZ ¼ 44, NGZ ¼ 64 and NGZ ¼ 88 Gaussian points. For NGZ ¼ 64 and NGZ ¼ 88

the density profiles are not significantly influenced by the accuracy of the angular integrals.
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From Fig. 4 one sees that the number of points in the angular integration strongly influences the density

profiles in the cases with small numbers of Z grid points. Differences in the shape of the curves in Figs. 4(a)

and (c) are undeniably big. This changes for larger Z grids, as is shown in Figs. 4(b) and (d). Here, the

structure of the surface peaks remains almost the same. An increase of the grid size, however, results with

longer computational time. An optimal grid should provide a compromise between the profiles quality and

the computers� fastness. Fig. 4 shows that NGZ ¼ 64 gives already reasonable profiles but it is not very

conclusive with respect to the angular integration.



Fig. 5. Influence of the grid size on the accuracy of the order parameter profiles. (a), (c) and (e) (left column) are for the angular

NG ¼ 10 points and (b), (d) and (f) (right column) are for NG ¼ 16. The subsequent curves in the pictures come from the usage of

different Z grid density. The dotted line is for NGZ ¼ 32, the dashed-dotted line for 44, the dashed line for NGZ ¼ 64 and the solid line

for NGZ ¼ 88.
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A more detailed study of the order parameters profiles presented in Fig. 5 shows again that the grid

number NG ¼ 10 leads to large errors for NGZ ¼ 32 and NGZ ¼ 44. These results indicate that inaccurate

integration methods may suggest strong coupling between orientational and spatial properties which in

reality is a numerical artefact. A similar effect has been encounter by Shundyak and van Roij [42], but with

respect to influence of the angle responsible for biaxiality. During their investigations on isotropic–nematic
interfaces and the surface biaxiality effect for the Onsager spherocylinders, the authors of [42] observed that

the isotropic–nematic surface tension that follows after including biaxiality in the calculations is sub-

stantially smaller than the corresponding values based only on the uniaxial profiles in the case of the cruder

grids, i.e., containing less than 200 equispaced points (this relates to an averaged number of points per

particle length of 20). This difference is a numerical inaccuracy and vanishes for larger grids (more accurate

spatial integration).

The error parameter we utilise is a sum of the absolute values of the differences between the old and the new

iterated distribution values at each evaluated point. As such defined, the error is proportional to the number
of the total Gaussian points used (the size of the grids) which in our case vary from 3200 (10� 10� 32) till

22,528 (16� 16� 88). In our calculations the convergence error varies from 0.00002 to 10E � 8, the less

accurate for the system with the smallest number of the grid points. These errors together with the large

numbers of evaluations used show that the quality of the results do not couple to the convergence degree.

At the end we would like to highlight two points.

The presented analysis is for the case when the integration regimes are ‘‘in one piece’’. The integration in

space spans the length ð0; LÞ, the integration in the azimuthal angle ð0; 2pÞ, and in the polar angle

ðHmax; p�HmaxÞ. In principle one can divide these regimes into subregimes and use for each subregime an
independent integration. This is worth remembering since there are cases which may require separate in-

tegrations, for instance, when the wall interactions are prescribed on two disconnected regimes ð0;HmaxÞ



A. Chrzanowska / Journal of Computational Physics 191 (2003) 265–281 279
and ðp�Hmax; pÞ. Different intervals in the Z coordinate can be also used with more Gaussian points in the

oscillating in density regimes and less in more uniform areas. The program using independent subintervals

in the integrations may react differently to the initial conditions as compared to the program based on one

piece integration. Also it may exhibit different convergence ability.
6. Application of the algorithm to the soft potentials

In general the wall potentials can be continuous functions which contain strong short range repulsion as

well as long range attractive parts. Accordingly to the self-consistency equations they directly contribute to

the mean potentials in an additive form (23). Infinitely strong steric parts make the distribution function

f ðr12; a1; a2Þ vanish. This fact, on the other hand, influences values of all the integrals that contain f . The
condition for vanishing f means that certain regimes of the integral arguments are forbidden. These regimes

can be analytically assessed, for instance, with the help of the the equipotential surfaces

Uðr?; a1Þ ¼ 0: ð35Þ

A particular example of Eq. (35) of the Lennard–Jones type potential one can find in [34], where Gruhn
et al. treat the walls as built from spherical particles. For a given orientation a1 of a chosen molecule, Eq.

(35) provides the distance to the wall jr?j below which the potential exhibits a steep slope that quickly

approaches infinity. If needed the point jr?j can be also shifted to lower values by ascribing a positive

number C to the right-hand side of (35) such as expð�CÞ establishes accuracy with which we need to

calculate our distribution function f .
7. On the possible problems while using Gaussian integrations

The main idea of the method discussed in this paper is to preserve the number of points used for the

integration in the angular intervals, especially in the subsurface areas. These angular integrations are

performed by use of the Gaussian quadratures since the dependencies here, together with their derivatives,

are expected to be continuous functions. Also the spatial integration over the Z variable is based here on the

Gaussian quadratures. One can, however, pose the question what will happen when the interactions have

discontinuous derivatives in the spatial variable, which can be encountered, for instance, in the hard

particles models. In the case of such interactions one can expect that the profiles can contain cusp-like
structures due to the characteristic points as, for instance, the point Z ¼ A=2. Here, indeed, discontinuities

of the first derivative of the obtained profiles are observed for dilute systems [12]. If the density increases,

however, these cusp-like structures are getting suppressed. In view of the above one can pose the question

how the Gaussian quadratures cope with such discontinuities. It is well known that high performance of the

Gaussian integrations is restricted to continuous functions. In the case of cusp-like structure its efficiency

deteriorates and, effectively, accuracy can reach the level of other methods as, for instance, the method

based on the trapezoid rule. Still it seems that Gaussian quadratures can perform better. Let us compare

accuracies for both the methods, Gaussian and trapezoid, at different numbers of the integration points.
Table 1

Accuracy of the integral of the function y ¼ x2 over the interval ½0; 1� in percentages (100%� error/value)

10 Gaussian points 10�13%

100 Points in trapezoid method 10�2%

1000 Points in trapezoid method 10�4%

10,000 Points in trapezoid method 10�6%



Table 2

Accuracy of the integral of the function y ¼ jxj over the interval ½�1; 1� in percentages (100%� error/value)

10 Gaussian points 0.75%

20 Gaussian points 0.2%

88 Gaussian points 0.01%

101 Points in trapezoid method 0.01%

1001 Points in trapezoid method 10�4%

10,001 Points in trapezoid method 10�6%
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In Tables 1 and 2 we give accuracies of the integrations of the cusp function y ¼ jxj and the continuous

function y ¼ x2. The accuracy of the Gaussian quadrature has diminished drastically if the cusp occurred,

but the trapezoid method is not much better. In practice, the accuracy of the trapezoid method can lead to

much worse results since usually the functional dependencies are not linear as in the case of the parts of the
function y ¼ jxj, for which the trapezoid method gives perfect results.

To sum up: although the Gaussian quadratures method of integration is regarded as exact one should be

aware of the fact that occurrence of the cusps in the characteristics of the confined hard core liquid crystals

can influence the overall accuracy of the df theory calculations.
8. Summary

To summarise, we describe an algorithm for quick and efficient calculations of multidimensional inte-

grals in the density functional theory of the confined liquid crystals, where the restricting conditions are

imposed on the angular argument by the surface excluded volume effects that arise due to the hard core

parts of the potentials. The algorithm is based on the Gaussian quadratures, whose points are parametrised

by the appropriate wall conditions. In the case described it concerns integration over the polar angle and

the parameter is provided by the Z dependence. Application is discussed within the framework of the simple

Onsager theory, note, however, that more advanced mean field models like the Parsons–Lee theory [44] or

the modified Rosenfeld theory [45] utilise similar multidimensional integrals. The algorithm uses minimal
storage of the computer memory and at the same time it is capable to obtain the full information about the

density oscillations and orientational (biaxial included) effects, which are characteristical for liquid crystals

confined in a pore.

It has very good perspectives for future applications to more complicated problems of mixtures, smectic

phases and structured substrates with a designed geometry of interactions.
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